
CAR -TR-S15 F4 9620-'<:>-. ■ 0332 
CS-TR-3605 NOOOi-i !>". -052; 

.lam:;:!'; ■  :!>i>i; 

3D CURVE RECONSTRUCTION 
<■ 

FROM [ UNCALIBRATED 

Isaac Weiss 

CAMERAS 
: 

Computer \ ision Laboratory 
( enter for Automation R esearch ■: 

I niversitv of Maryland • 
Colie.se Park. Ml) 2074: C327Ö 

: ^^r?JF'jTj;.Vi''* 

sHll^£&#^''; 

,14 

, % -'l ' 
- 'AÄ-". 

'•?$&$$$. 

■$m 

COMPUTER VISION LABORATORY 

pjwpnggp?!oy aATsacoiT K 
I     ÄgS5jov9<s iss puDbc r©l©cM| 

CENTER FOR AUTOMATION RESEARCH 

UNIVERSITY OF MARYLAND 
COLLEGE PARK, MARYLAND 

20742-3275 



CAR-TR-815 
CS-TR-3605 

F49620-92-J-0332 
N00014-95-1-0521 

January 1996 

3D CURVE RECONSTRUCTION 
FROM UNCALIBRATED CAMERAS 

Isaac Weiss 

Computer Vision Laboratory 
Center for Automation Research 

University of Maryland 
College Park, MD 20742-3275 

Approved fa» pubiic release 

Abstract 

There has been considerable work recently on the problem of reconstruction of 3D point 
sets from two images, taken by uncalibrated cameras. However, the point correspondence has 
to be given. Here we deal with reconstruction of curves rather than points. While we need 
the correspondence between curves, this is an easier problem because curves are far fewer 
and more distinctive than points. We derive a simple and general reconstruction method, 
based on an invariant coordinate system. We then apply it to non-coplanar conies and to 
combinations of a 3D conic with points. 3D cubics are also discussed. Unlike previous work, 
we do not need to know the epipolar geometry; we recover it from the images. 

Keywords: object recognition, invariants, deformation. 
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1. Introduction 

The problem of 3D reconstruction from uncalibrated cameras is closely related to the prob- 

lem of finding projective and affine invariants. This is because, regardless of the camera 

parameters, we can assume that the camera performs a simple geometric projection (assum- 

ing an aberration-free lens). The invariants of this projection are thus independent of the 

camera parameters. The development of applications of invariants in vision generally (e.g. 

[13-15]) has thus led to the development of such applications for uncalibrated cameras, e.g. 

[1-12]. 

There are no invariants of a projection from 3D to a single 2D image, so we need at least 

two views. Given the projections of the same 3D object in the two images, the object can 

be reconstructed. In most of the above mentioned work, the objects are points. One needs 

at least seven corresponding points for the reconstruction, or eight if the problem is to be 

solvable linearly. Finding point correspondences is far from a solved problem in vision, and 

this limits the usefulness of these methods. 

The objects we deal with in this paper are curves rather than points. Finding correspon- 

dence between curves is much easier than between points. There are far fewer curves in an 

image than there are points, so a combinatorial explosion is unlikely to be a problem. In 

addition, unlike points, curves have features that distinguish one from another and can be 

used to narrow down the possible matches. A few of the references above deal with conic 

curves but require a priori knowledge of the epipolar geometry, or the matching properties 

of the images. Here we recover this information from the images. 

It is easy to calculate the minimal number of parameters the object's description has to 

have for the problem to be solvable. In the general projective case, each camera projection 

from 3D to 2D is a 3x4 matrix, having 11 essential coefficients. If the object has n parameters 

in a known coordinate system, we have n + 22 unknowns. Of these, we give up 15 by using an 

indeterminate 3D coordinate system which we cannot recover. This is a result of not knowing 

the camera parameters. Thus we need to find n + 7 unknowns. To solve this problem we 

thus need at least n + 7 known quantities. If the projection of the object has m measurable 



parameters in each image, we must thus have 

2m > n + 7 

In the affine case, the projection matrix has 8 parameters and the 3D coordinate system has 

12, so similar arguments yield 

2m > n + 4 

We see immediately that seven 3D points satisfy the above formula in the projective case, 

with a total number of n = 21 parameters in 3D and m = 14 in the 2D projections. In the 

affine case four points suffice. (However, due to noise, many more corresponding points in 

the images are actually needed.) A set of two conies in 3D has 16 parameters, projected into 

ten on each image. Thus such a set will satisfy our requirement in the affine case, but will 

leave three parameters unknown in the projective case. A cubic curve has 12 parameters in 

3D, projected into eight parameters in 2D; thus it too will satisfy the affine requirement but 

will leave three parameters unknown in the projective case. 

For recognizing the objects, only some of the quantities solved for will be useful. These 

will be object descriptors which are invariant to a 3D transformation. (The rest of the 

quantities will be related to the cameras). An object with n parameters will have n — 15 

invariants in the projective case and n — 12 in the affine case. The pair of 3D conies thus 

has one invariant in the projective case and four in the affine case. The cubic has no 3D 

invariants and therefore cannot be recognized. In other words, all 3D cubics are affine 

(and projective) equivalents; but we can still derive some information from them about the 

cameras and the correspondence between the two images. Higher order curves can in theory 

also be reconstructed, but they are difficult to extract from the images. A more practical 

approach for a general curve can be to approximate it as a series of conic pieces. 

Combinations of curves and points are also of interest. For instance, one conic and two 

points in 3D have two invariants in the affine case. 

In this paper we solve the reconstruction problem in two stages: 

1) We recover the epipolar geometry, namely the matching properties between the two 

images. 



2) We find the 3D invariants of the objects, based on the matched images. This is done 

in an invariant coordinate system which makes the process very simple and general. 

2. Finding the Epipolar Geometry 

In this section we find the epipolar geometry, namely the matching properties between the 

images. This will enable us to reconstruct the objects in the next section. 

We have two cameras with optical centers at O, O' in 3D. The line connecting these 

points intersects the first image at o and the second image at o'. These are the epipoles. 

In other words, an epipole is the projection, in one camera's image, of the other camera's 

optical center. An arbitrary point X in 3D defines an epipolar plane OO'X going through 

it and the optical centers. This plane intersects the first image in a line ox and the second 

image in a line oV. These are the epipolar lines. They form in each image a pencil of lines 

meeting at the epipole. Obviously, for a given X, the epipolar lines match each other since 

they belong to the same plane. Finding the epipolar geometry means finding the points o, o' 

and finding the matching between the epipolar lines. 

The epipolar geometry can be succinctly represented by the so called fundamental matrix. 

In the case of points, it is quite easy to find this matrix, given the point correspondence. In 

our case of curves, we did not find this matrix particularly useful; we therefore use a different 

method. 

Our method is based on invariants of the epipolar lines that are equal in the two images. 

These can be found as follows. The points X; form planes OO'X; having a common line 

OO'. Thus we can define a cross ratio of these planes, in the projective case, or a ratio in 

the affine case. These planes intersect the first image in the epipolar lines ox2, and therefore 

these lines have the same (cross) ratio as the planes on which they lie. Similarly, in the 

other image, the matching epipolar lines o'x' have the same (cross) ratio as their planes. 

Therefore, the (cross) ratio of matching epipolar lines is the same in both images. 

This invariance can be used to find the epipoles as follows. Given some matching points 

Xj,xJ-, we can express the epipolar lines going through them as functions of the unknown 

epipoles o, o', since these lines go through the epipoles. By equating the ratios of matching 

epipolar lines, we obtain enough equations to determine o, o'. For matching curves, it is easy 
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to find matching epipolar lines by drawing tangents to the curves from the epipoles. Since 

these tangents are projections of the corresponding tangent planes to the 3D curves, they 

will match. The contact points of the tangents with the curves will also match. We can then 

use the method described above, i.e. use the ratios of these tangents, to write equations for 

finding the epipoles. 

In the affine case, the epipoles are at infinity, meaning that all epipolar lines in each 

image are parallel. Thus all epipolar lines in the first image have the same slope s, while 

those in the second image have a slope s'. The problem of finding the epipoles is now reduced 

to finding the slopes s, s'. 

We will now perform the calculation in the affine case for various configurations. We 

can represent a family of parallel lines having a common slope s as a vector in homogeneous 

coordinates 

i = (s,M) 

where d is a distance parameter proportional to the intercept. 

Given three epipolar lines with different di, we can define their ratio as {d1-d2)/(d3-d2). 

This is an affine invariant and is the same in both images if the lines match. Given four such 

lines, we have two invariant ratios, which will yield two equations for s,s'. 

2.1. Two Conies 

Two conies in an image have four tangents with the same slope s, so they can be used in 

our method. 

The tangents to a conic satisfy the equation of the line conic, the dual of the point conic. 

Denoting the regular (point) conic by the matrix A~\ the line conic is A = aijr 

To find tangents with slope s, we substitute the line vector in the line conic: 

/an    oi2    «13\  fs\ 

\A\t = (s,l,d) 

From the symmetry of A we obtain 

Ö21      a22      a23 

\ö31      «32        1   J 

1 

\dj 

= 0 

aus2 + 2ai25 + a22 + 2a13sd + 2a2Zd + d2 = 0 
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The two solutions for this quadratic equation in d are 

^1,2 = ~°23 ~ «13« ± V (°13 - ßll)52 + 2(013023 - Oi2)s + a\z - d22 

To get rid of the square root it is more convenient to deal with the "width" of the conic, 

d\ — d2, and with the d of the line going through its center, da
c = \{d\ — d2): 

2 K ~ d2f = («13 _ öll)s2 + 2(ai3Ö23 - 012)5 + o4 - Ö22 

da
c = \(da

1+da
2)

2 = -a23-a13s 

Similarly, for the other line conic B we have 

\{d\ ~ A? = (& - *ii)*2 + 2(613623 - 612)5 + 623 " 622 

dbc = \{d\ +4)2 = -623 -b13s 

We make the expressions for d", db
c independent of the unknown s by choosing a coordinate 

system in which ai3 = 613 = 0. This is equivalent to choosing a y-axis that goes through the 

centers of both conies. 

From the four values of d we can obtain two affine invariant ratios: 

(d\ - dp2 _    aus2 + 2ai2.s - a\z + a22 

(<£-<S)2"" (a23-623)
2 

id\-d\)2 _    bns2 + 2b12s-b2
3 + b22 

(d> - d\f (a23 - 623)2 

In the other image, we have again two (line) conies A', B'.   The epipolar lines have a 

\ slope s' with respect to the local coordinate system.   Therefore two invariants similar to 

those above exist, with a,--, &,■_,-, s' replacing the primeless quantities above. 

As discussed before, these invariant ratios are the same in both images, i.e. 

ans2 + 2ai23 — a2
3 + a22      a'ns'2 + 2a'12s' — a'2

2 + a22 
1) (a23 - 623)2 (a'23 - 6'23)

2 

..UK. 
(2) 

6n-s2 + 2b12s - b\z + b22      b'ns'2 + 2b'l2s' - b'2
2 + b'22 

(a23 - 623)
2 (a23 - 6'23)

2 

We have thus obtained a system of two quadratic equations for the two unknowns s, s'. They 

can be solved by standard elimination methods. We obtain a quartic equation for s (or s'), 
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leading to four solutions to the problem. As in the case of points, extra information such as 

more matching conies reduces the problem to a system of linear equations. 

After finding the slopes, it is easy to find all the matches between epipolar lines. Two 

epipolar lines with parameters d, d! match each other if they are related by the invariant 

ratio 
{d-dp _{d'-dl') 
(d-d*c)      (d>-d>c>) 

with all other quantities above now being known. 

2.2. A Conic and Points 

The method described above is easy to extend to a combination of a conic and points. Given 

points Xj, they lie on the epipolar lines (s, l,d;), i.e. they satisfy 

ljX; = sxi + yi + di = 0 

We thus have the following equations for d;, d'f 

di = -sxi - y^        d\ = -s'x'i - y\ 

We can now define the two ratios 

1 (d\ - da
2)

2 _ (a\z - an)s2 + 2{alza2z - ay)* + «23 - «22 

2 (di - d2)
2 ~ (s{Xl - x2) - {Vl - y2))

2 

dl        _ -«23 - «13^ 
di - d2      -s(xi - x2) - (yi - y2) 

We can choose a coordinate system in which xx-x2 = 0, eliminating s from the denominator. 

Equating the above two ratios to the ones in the other image we obtain 

(«13 - «n)s2 + 2(a13a23 - 012)* + <4 ~ a22 _ (a'J - «nK2 + 2(«;3«23 ~ a'uW + g23
2 ~ a22 

G/2-2/O2 (y'2-y'i)2 

(3) 
—a23 — dizS _  ~«23 ~ a135 (£\ 

V2 -v\ y'2- y't 

We have two equations for s, s', which are easy to convert to one quadratic equation. 

Given an additional point, we obtain an additional linear equation: 

-s{xi - x3) - (yi - y3) _ -3
#(gj - 4) - (y'i - y'z) 

V2 -yi y'2- y'i 
(5) 



Eqs. (4),(5) are a linear system in s,s'. They are equivalent to a four-point set, with the 

conic center (an affine invariant) being the fourth point. Given a system of many points 

and conies, we can solve an overdetermined linear system of equations either for s, s' or for 

5,5',s",s"", to obtain a more robust solution. 

2.3. A Cubic 

A cubic curve in 3D can be written in homogeneous coordinates as 

X(r) = Co + Cjr + C2r
2 + C3r

3 

with C; being constant vectors. It is projected into the images as two cubic curves x(£), x'(i'). 

The parameters in 3D and in the two images do not necessarily match. In fact, each param- 

eter can change with three degrees of freedom, while the curve remains a cubic: 

~     at + b 
t = —^ ct + d 

If the parameters U at three points are known, the three constants a, b,c can be found and 

this determines the parameterization uniquely. Thus, given two images of a cubic with three 

matching points, the matching of any other point on the cubic is determined. (This in in 

fact true for any rational curve). 

To find three matching points, we find three tangents to the cubic having slope s in the 

first image and s' in the other. Solving a cubic equation for the tangents, we obtain three 

values di(s), d'^s') in each image. These values obviously depend on the unknowns s,s'. 

The contact points of these tangents match, and so they can be assigned the same values 

Ü in both images, say 0,1,oo. This will determine the coefficients a,b,c for each image, 

and thus establish the same unique parameterization in both images. This solves the point 

correspondence problem between the two images. 

To find the epipolar geometry, we can now select a fourth point, say t = 2, in each image 

and find the line with slope s ($') going through this point in the first (second) image. We 

have thus obtained four matching parallel lines in each image, depending on s, s'. As in the 

conic case, we have two invariant ratios, providing two equations for the unknowns s,s'. 



Higher-order curves can be dealt with in a similar way, using three of their n matching 

tangents to establish the parameter correspondence. However, these tangents would not be 

very reliable in practice. 

3. Reconstruction 

Having found the epipolar geometry, we can reconstruct the 3D object. 

3.1. Invariant Coordinates 

The reconstruction is easier in term of a coordinate system which is common to the 2D and 

3D spaces and is invariant in both. 

We build this coordinate system using a set of reference points which are determined 

invariantly by the 3D object and its projections. We need four reference points in 3D, and 

three of their projections in each image. In the case of two 3D conies, we can use in 3D the 

four contact points X,- of the conies with the epipolar planes tangent to them. These X,- are 

projected onto the images as the contact points of the conies with the epipolar lines tangent 

to them. These tangents have known slopes s, s' and they touch the conies at known points 

x,-,x<. These reference points, both in 3D and 2D, are thus determined invariantly. 

We can assign to the reference points in 3D the standard coordinates 

(1,0,0,1),     (0,1,0,1),    (0,0,1,1),    (1,1,1,1) (6) 

In 2D we need only three points in each image. We can use Xi,x2,x4 in the first image and 

a slightly different subset, say x'^x^x^, in the other image. Both subsets can be assigned 

the coordinates 

(1,0,1),    (0,1,1),    (1,1,1) (7) 

in their respective images. These choices make the projection matrices from 3D to 2D very 

simple in this "canonical", invariant system: 

/l    0   0   0\ /l    0   0   0\ 

p = 0    10   0 

\o  o  o  1/ 

p' = 0   0    10 

\0   0   0   1/ 

Using this, the remaining 3D point is projected into the origin (0,0,1) in each image. 
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Any point in 3D can be expressed in terms of our 3D reference points as 

V = (U,V,W) 

while in 2D we have 

u = (u,v),        u' = (u',v') 

Using the projection matrices we find a very simple relation between the 3D and the 2D 

invariant coordinates: 

u = u' = U,        v = V,        v' = W (8) 

That is, the first coordinate is common to both images and to the 3D space. It is related to 

the invariant ratio used earlier to find the epipolar geometry. The other coordinates are also 

common to 2D and 3D and can also be easily interpreted geometrically as ratios of planes 

and lines common to 3D and 2D. 

The reconstruction can now proceed in two steps. 

1) Given the curves in 2D Cartesian coordinates x, x' in the images, transform them to the 

invariant coordinates u, u'. The transformation matrices between the two coordinate 

systems can be easily found from the linear equations 

X; = jm,        x'i = j'u'i 

where u,,u(- are the invariant reference points as expressed in the invariant system, 

eq. (7), and j,j' are the transformation matrices. The coordinates x,x' in the curve 

equations are then replaced by ju,j'u' to obtain the curve equations in terms of u, u'. 

2) Using the relations (8), the 2D invariant coordinates in the curve equations are replaced 

by the 3D ones. This creates 3D (general) cylinders arising from each image. These 

cylinders intersect to form our 3D curve. 

There is also a 3D transformation matrix J analogous to the 2D ones, satisfying 

X,- = JUi 

with Uj being the 3D reference points as expressed in the invariant system, eq. (6). However, 

since the X,- are unknown, we cannot find J.  This matrix contains the unknown camera 
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parameters.   Therefore, we can reconstruct the 3D object only up to an arbitrary affine 

transformation J. 

The projection matrices P, P' can be found from the "canonical" ones P, P' defined earlier 

by 

P = jPJ-\      P^j'P'J-1 

Thus, if some of the coefficients in P, P' are known, we can recover some of the coefficients 

in J and therefore have more information about the 3D object. 

3.2. Reconstructing Conies 

We will now find the 3D conic equations in invariant 3D coordinates. 

Carrying out the first step above, we move the conies in the images to the 2D invariant 

system. We have the (point) conies A, B in one image and A', B' in the other, satisfying 

x'Ax = 0,        xnA'x' = 0 

and similarly for B, B'. Replacing x by ju and x' by ju' we obtain the conic matrices in the 

invariant system 

Ä = j*Aj,       Ä' = jrtA'j' 

which satisfy the equations 

u*Äu = änu2 + ä22V2 + 2äi2uv + 2ä13u + 2ä23u + c33 = 0 

u"ÄV = ä'nu2 + ä'22v'2 + 2ä'12uv' + 2ä'13u + 2ä'23v' + ä33 = 0 

and similarly for B,B'. The coefficients ö;,ä'- are not independent. There is only one 

independent quantity for each 2D conic. This is because in the invariant coordinate system, 

the contact points of the conic with the epipolar tangents have fixed coordinates, namely 

eq. (7) and (0,0,1). These also determine the slopes s,s' as fixed values. The conic has to 

pass through two of these contact points and be tangent there to the epipolar lines. This 

determines four out of the five conic parameters. Incidentally, one of the contact points in 

the invariant system is the origin, therefore one of the coefficients ä33, ä33 equals 0, while the 

other equals 1. 
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Carrying out the second step, we replace the 2D coordinates u, u,u' in the equations 

above by the 3D coordinates U, V, W using eq. (8). We first deal with the conies A, A'. We 

obtain 

ctnU2 + a22V
2 + 2ä12UV + 2ä13U + 2ä23V + ä33 = 0 

ä'nU2 + ä'22W
2 + 2ä'12UW + 2ä'l3U + 2ä'23W + ä33 = 0 

These are two (conic) cylinders, the axis of each being parallel to the direction of the pro- 

jection onto the corresponding image. The intersection of these two cylinders forms our 3D 

conic. In general, two cylinders do not intersect in a plane conic. However, we have assumed 

a priori that our two images A, A' are formed by the same 3D plane conic, so this conic must 

lie on both cylinders. 

We will now find the intersection of the cylinders. In general, it can be found by elimi- 

nation methods. However, our case is particularly simple because the intersection is planar 

and the planes contain the 3D reference points (6). A plane can be generally written in the 

invariant coordinate system as 

U = ax V + a2W + a3 

Without loss of generality, we can assume that the plane na, containing the conic arising 

from A, A', also contains the reference points (1,0,0,1), (0,1,0,1). Substituting these points 

in the plane equation above we obtain — 0:1 = cc3 = 1, so na can be expressed as 

IT : U = -V + aW+l (9) 

a is an invariant characterizing the plane na in the invariant coordinate system. 

To find the invariant cu, we eliminate U from the equations of the two cylinders above, 

using the plane equation (9). We obtain two plane conic equations in the variables V,W: 

(on - 25i2 + a22)V
2 + 2a(-ön + a12)VW + a2anW2 

+2(-ön + Ö12 - öi3 + ä2Z)V + 2a(än + ä13)W + än + 2ä13 + ö33 = 0 

ä'uV
2 + 2(-ä'ua - ä'12)VW + (ä'na

2 + 2ä[2a + ä'22)W
2 

+2(-ä'n - ä'l3)V + 2((ä'u + ä'13)a + ä'12 + ä'23)W + ä'n + 25'13 -f a33 = 0 
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Since these equations represent the same conic in the plane IIa, they must have the same 

coefficients. We thus obtain five equations (from the five conic coefficients) for the one 

unknown a. However, we have already seen that each cylinder has only one independent 

coefficient, so only one of these equations is meaningful. The rest are either identities or they 

are dependent on the first. We can see more directly that the 3D conic in IP has only one 

independent coefficient in our invariant coordinate system. The conic has to pass through 

two of the 3D reference points having the fixed coordinates (6), and be tangent there to the 

epipolar planes, which are known with fixed values from the corresponding epipolar lines. 

This fixes four of the conic coefficients. 

We obtain a by equating the coefficients of VW: 

a =  
an ~~ an — ai2 

Substituting a in either of the conic equations above will give us the description of the 

3D conic. All the coefficients are invariant, but only one is independent, as discussed above. 

The other 3D conic can be found in a similar way. Its plane II6 can be written as 

n6 : U = V + ßW - ß (10) 

and contains the reference points (1,1,1,1), (0,0,1,1).   Substituting this in the cylinders 

arising from B, B' we obtain the conies 

(6ai + 2b12 + b22)V
2 + 2ß(bn + b12)VW + ß2bnW2 

+2(-buß - b12ß + b13 + b23)V + 2(-bnß2 + b13ß)W + b^ß2 - 2b13ß + b33 = 0 

b'nV
2 + 2(b'nß + b'12)VW + (b'nß

2 + 2b'12ß + V22)W
2 

+2(-b'11ß + V13)V + 2(-b'nß
2 + V13ß - b'12ß + b'23)W + \xß

2 - 2b'13ß + b'33 = 0 

We obtain ß by equating the coefficients for VW: 

b' 12 

&ii + b12 - b'u 

Substituting this in the conic equations above, we obtain the conic in the plane II6. Again, 

all the coefficients are invariants, with only one being independent. 
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In sum, each conic has two invariants associated with it: the coordinate of the plane 

on which it lies (a or /?), and one invariant conic coefficient (or any one function of the 

coefficients). Altogether, we thus have four 3D invariants. This is what we concluded earlier 

from a simple counting argument. 

We can find a geometric construction of the conic invariants by a method we used earlier. 

First we find the line of intersection of the two planes IP, II6. In each plane we can now 

draw tangents to the conies that are parallel to this intersection line. The ratio of distances 

of the tangents from the intersection line is an affine invariant of the conic. 

The above method is easily applied to a combination of a conic and points. Two of the 

invariant reference points in 3D will be determined by the conic as before, and the other two 

will be the given points. The conic is reconstructed using the same equations used above 

(with either A or B). The system will have two 3D invariants: the plane coordinate a (or 

ß) and the invariant of the conic lying in it. 

4. Conclusion 

We have reconstructed 3D objects, such as a pair of non-coplanar conies, from uncalibrated 

images, up to an affine transformation. No knowledge of the epipolar geometry was needed; 

it was recovered from the images. The method is based on using invariants of epipolar lines 

that are equal in the two images when these lines match. This invariance is used to find 

the epipolar geometry. We have built a coordinate system which is common to 3D and 2D 

and is invariant in both. This invariant system has made the reconstruction very simple and 

general. The affine invariants of the 3D objects are obtained very easily in this system. Since 

many curves can be approximated by or segmented into conies, the method can be useful in 

many applications. 
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